联系电话:400-099-6641

活性炭吸附法在挥发性有机物治理中的应用研究

2020-09-18 22:06

  挥发性有机化合物(VOCs)是一类重要的大气污染物,其所带来的环境污染问题已经引起全世界的关注。活性炭吸附法是治理VOCs污染的有效手段。本文从介绍VOCs治理技术出发,简述了活性炭吸附法在VOCs治理中的使用现状,概括了活性炭吸附法治理VOCs的工艺技术和存在问题,指出变温-变压吸附、变电吸附以其高效节能环保的优点,在VOCs治理中具有较好的发展前景。分析了活性炭表面化学性质、吸附质的物性、操作条件对活性炭吸附法治理VOCs的影响,为VOCs治理专用活性炭的改进和新产品的开发,提供了理论依据。在总结现有研究进展的基础上,预测了活性炭吸附法治理VOCs技术的发展趋势,提出对工艺的改进以及与其他VOCs废气处理技术的耦合使用,针对不同VOCs排放场所开发不同活性炭品种和VOCs回收装置将是以后研究的重要方向。

  挥发性有机化合物(volatileorganiccompounds,VOCs)是指在20℃时饱和蒸气压大于等于0.13kPa的有机化合物[1]。其主要来源于石油化工行业废气的排放,储油库、加油站、车辆等油品的挥发和油漆、涂料、包装、印刷、胶黏剂、化妆品等行业有机溶剂的使用。据统计,2009年我国工业源VOCs排放量约为1206万吨,并且每年呈约8.6%的递增趋势[2]。到2030年,仅加油站VOCs的排放量可达1271.03千吨,经济损失近十亿元[3]。VOCs大多数有毒,并且由于饱和蒸气压高,可以在自然状态下挥发到空气中,通过呼吸道进入人体,诱发多种疾病。VOCs还是导致雾霾天气的元凶之一,由VOCs经化学转化生成的颗粒物,在一些地区可以占PM2.5来源的21%。由VOCs经光化学反应形成的二次气凝胶占PM10的25%~35%[4],是PM10的重要组成部分。随着雾霾天气大范围的持续出现,VOCs治理问题已经引起世界各国的高度重视,若能经济有效地回收VOCs,特别是高浓度、高价值的VOCs,具有环境、健康、经济三重效益。为了更好地应对我国当前的大气污染形式,促进VOCs的减排与控制,2013年9月,国务院印发了《大气污染防治行动计划》,要求推进VOCs污染治理,特别是在石化、有机化工、表面涂装、包装印刷等行业实施VOCs的综合整治。同年,国家环保部发布了《挥发性有机物(VOCs)污染防治技术政策》公告,针对含VOCs产品在生产、储运销、使用等各环节的污染问题提出了防治策略和方法。VOCs的减排与治理已经成为当前大气污染防治的重点工作。

  VOCs 治理首先应从生产的源头和过程控制开始,采用清洁生产技术,使用含VOCs少的原料,研发新型替代原料可以很好的防止污染的产生。其次要加强VOCs的末端治理工作,回收利用具有经济价值的工艺废气、装卸废气和储罐呼吸气等;按照法律法规,对难以回收利用的废气进行处理。目前VOCs治理技术以末端废气治理为主。传统的末端废气治理技术有吸收法[5]、燃烧法[6-7]、冷凝法[8-9]和吸附法。新兴的技术有生物法、低温等离子体法、膜分离法、光催化氧化法等[10-13]。通常工业排放的废气中VOCs浓度在100~2000mg/m3之间,对这种中低浓度的VOCs,采用吸附法、吸收法对有机溶剂回收后达标排放;不宜回收时,可采用燃烧法、生物法、光催化氧化法等净化后达标排放。

  吸附法是目前处理VOCs的最常见的方法,特别适用于处理低浓度的VOCs[14]。与其他VOCs治理技术相比,吸附法能选择性地分离其他过程难以分开的混合物,对低浓度有毒有害物质去除效率高,操作简便安全,无二次污染,并且经过处理后可以达到有机溶剂回收、吸附剂循环使用的目的。目前常用的吸附剂有活性炭、硅胶、活性氧化铝、沸石分子筛[15]。近年来,用活性碳纤维、活性碳纳米管[16]、碳化物衍生碳、活性碳布等处理VOCs的方法也引起了人们的关注。活性炭相对其他吸附剂有多种优点:它的孔径分布广,微孔发达,吸附过程快,能够吸附分子大小不同的物质,对苯类、乙酸乙酯、氯仿等VOCs的吸附回收非常有效,非极性、疏水性的表面特性,使它对非极性物质的吸附有较好的选择性;并且活性炭原料廉价充足,制备工艺简单,易脱附再生,基于此,活性炭已被广泛用作吸附剂来处理低浓度、较大风量的中等相对分子质量(通常约为45~130)的VOCs[20],尤其是磷酸法制备的木质颗粒活性炭,具有吸附容量大,脱附残余小,表面官能团丰富,制备工艺经济环保等优点,在国内外被大量用于VOCs的治理。

  为了提高净化效率,活性炭吸附法常与其他处理方法联用,常用的方法有吸附浓缩-冷凝回收法和吸附浓缩-催化燃烧法。吸附浓缩-冷凝回收法是通过热气体将吸附了VOCs的活性炭进行脱附,再将脱附出的高浓度VOCs用冷凝装置回收的方法。该法适合治理组分单一的高浓度VOCs废气,而不适合治理多组分、低浓度的情况。吸附浓缩-催化燃烧法是指将热气体脱附出的浓缩的VOCs送往催化燃烧床进行催化燃烧处理的方法。以活性炭作为载体,载过渡金属(Cu、Co、Fe、Ni等)的催化剂,可以在较低温(200~250℃),较低含氧量的条件下,催化燃烧VOCs变成CO2和H2O[23],这种方法特别适合苯类、醛类、醇类等气体浓度含量较低性质比较稳定的VOCs的废气处理[24]。

  变压吸附(PSA)是指在恒温或无热源条件下,通过周期性的改变系统压力,使吸附质在不同压力下吸附和脱附的循环过程。按照操作方式的不同,变压吸附可分为利用范德华力之间的差异使用一般活性炭进行分离的平衡吸附型和利用分子吸附速度之间的差异使用特殊活性炭分子筛进行分离的速度分离型[25]。吸附通常在常压下进行,脱附过程则是通过降低操作压力或抽真空的方法来实现的,且在脱附时真空度越大越易脱附。但是在实际操作中,高真空度对吸附设备要求很高且耗能巨大,综合成本和吸附效果的考虑,工业上一般采用8~10kPa的脱附压力[26]。PSA技术自动化程度高可以实现循环操作,但在操作过程中需要不断加压减压,对设备要求高,能耗巨大,多用于高档溶剂的回收。

  变温吸附(TSA)是利用吸附剂的平衡吸附量随温度升高而降低的特性,在常温下吸附,升温后脱附的操作过程。活性炭脱附过程是吸热过程,升温有助于脱附,采用水蒸气、热气体进行脱附时,脱附温度通常在100~200℃。吸附VOCs时,若吸附量较高,吸附质是沸点较低的小分子碳氢化合物和芳香族有机物时,可用水蒸气脱附后冷凝回收;若吸附量较低,如甲苯、二甲基乙酰胺和乙酸乙酯等VOCs,则可用其他热气体(热空气、热N2等)吹扫进行脱附后烧掉或经二次吸附后回收[27]。RAMALINGAM等[28]使用TSA技术,对室内常见的3种VOCs(丙酮、二氯甲烷和甲酸乙酯)的回收利用进行了研究,发现3种VOCs热氮气再生的最佳操作条件为:T=170℃,V=0.17m/s。SHAH等[29]采用变温吸附研究了丙酮和丁酮的热空气再生性能,发现丙酮在80℃时经一次循环再生,吸附能力恢复近95%,经过8次连续循环基本保持不变;而对于丁酮,再生后吸附能力下降明显。

  变温-变压吸附(TPSA)结合了变温吸附和变压吸附两种技术的优点,是以变压吸附技术为基础在变压脱附后进行升温脱附的高效工艺技术。通过增加床层温度和降低柱压,使脱附进行得更彻底,提高了活性炭的再生效率[30]。RAMALINGAM等[31]的研究结合了热氮气脱附和真空减压脱附,已经表明两种技术结合后,对二氯甲烷的回收率达82%。此外,经过真空减压脱附后,活性炭床温从93℃降低到63℃,能显著减少下一次循环之前的冷却时间。

  变电吸附(ESA)是一种用于气体净化和分离的新兴工艺,它的实质是变温吸附。与传统的变温吸附不同,变电吸附的脱附过程是通过用电加热饱和吸附剂实现的,焦耳效应产生的热量促使吸附质释放。变电吸附有诸多优点:加热系统简单,能量直接传递给吸附剂,加热效高,能显著降低能耗[32];可以独立控制气体的流速和吸附剂的升温速度;热量流和质量流同向,更有利于脱附[33];费用低,使用变电脱附的费用可比使用热蒸气再生费用低50%[34];再生性能好,SNYDER等[35]的研究发现12次循环使用后,吸附剂的吸附容量保留97%~100%。

  变压吸附适合于高浓度VOCs废气的净化和高档有机溶剂的回收,具有自动化程度高、环境效益好、进口气量和浓度可灵活调节等优点,但由于前期投入成本高,吸附脱附需要不断加压,减压或抽真空,能耗巨大,同时还要注意死空间内气体的压力,在使用中存在着一定的局限性。目前VOCs治理多采用变温吸附36],变温吸附又以固定床居多。但变温吸附在使用过程中加热和冷却吸附剂需要花费较长的时间,多次循环后还会出现吸附剂因热老化性能降低的问题,并且对于三氯乙烷、苯乙烯等温敏性VOCs并不适用,因此研究者又在变温吸附的基础上开发了变电吸附。变电吸附具有加热效率高、加热速度快、溶剂回收率高等优点,在VOCs治理中已经受到国内外众多学者的关注,作为一种新兴的技术,具有很好的发展前景。变温-变压吸附结合了变温吸附和变压吸附两种技术的优点,能显著提高活性炭的再生率和有机溶剂的回收率,缩短一次循环过程的时间,但仍然摆脱不了两种技术各自的局限性,目前应用较少,但多种技术的耦合使用,开发复合型的气体分离技术,仍是未来VOCs治理的重要发展方向。实际使用中要根据不同工况条件和环保要求选择不同的吸附回收工艺,同时要加强新设备的研发和推广,积极寻求高效环保经济的VOCs治理新工艺技术。

  为规范挥发性有机物治理设施运行管理,提升挥发性有机物治理技术水平,上海生态环境局组织编制了《挥发性有机物治理设施运行管理技术规范(试行)》。